Utilizing Voronoi Cells of Location Data Streams for Accurate Computation of Aggregate Functions in Sensor Networks
نویسندگان
چکیده
Sensor networks are unattended deeply distributed systems whose database schema can be conceptualized using the relational model. Aggregation queries on the data sampled at each sensor node are the main means to extract the abstract characteristics of the surrounding environment. However, the non-uniform distribution of the sensor nodes in the environment leads to inaccurate results generated by the aggregation queries. In this paper, we introduce Bspatial aggregations^ that take into consideration the spatial location of each measurement generated by the sensor nodes. We propose the use of spatial interpolation methods derived from the fields of spatial statistics and computational geometry to answer spatial aggregations. In particular, we study Spatial Moving Average (SMA), Voronoi Diagram and Triangulated Irregular Network (TIN). Investigating these methods for answering spatial average queries, we show that the average value on the data samples weighted by the area of the Voronoi cell of the corresponding sensor node, provides the best precision. Consequently, we introduce an algorithms to compute and maintain the accurate Voronoi cell at each sensor node while the location of the others arrive on data stream. We also propose AVC-SW, a novel algorithm to approximate this Voronoi cell over a sliding window that supports dynamism in the sensor network. To demonstrate the performance of in-network implementation of our aggregation operators, we have developed prototypes of two different approaches to distributed spatial aggregate
منابع مشابه
Design and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملA Hierarchy Topology Design Using a Hybrid Evolutionary Algorithm in Wireless Sensor Networks
Wireless sensor network a powerful network contains many wireless sensors with limited power resource, data processing, and transmission abilities. Wireless sensor capabilities including computational capacity, radio power, and memory capabilities are much limited. Moreover, to design a hierarchy topology, in addition to energy optimization, find an optimum clusters number and best location of ...
متن کاملMobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- GeoInformatica
دوره 10 شماره
صفحات -
تاریخ انتشار 2006